Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Elife ; 122023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36719274

RESUMO

Reconstitution of germ cell fate from pluripotent stem cells provides an opportunity to understand the molecular underpinnings of germ cell development. Here, we established robust methods for induced pluripotent stem cell (iPSC) culture in the common marmoset (Callithrix jacchus [cj]), allowing stable propagation in an undifferentiated state. Notably, iPSCs cultured on a feeder layer in the presence of a WNT signaling inhibitor upregulated genes related to ubiquitin-dependent protein catabolic processes and enter a permissive state that enables differentiation into primordial germ cell-like cells (PGCLCs) bearing immunophenotypic and transcriptomic similarities to pre-migratory cjPGCs in vivo. Induction of cjPGCLCs is accompanied by transient upregulation of mesodermal genes, culminating in the establishment of a primate-specific germline transcriptional network. Moreover, cjPGCLCs can be expanded in monolayer while retaining the germline state. Upon co-culture with mouse testicular somatic cells, these cells acquire an early prospermatogonia-like phenotype. Our findings provide a framework for understanding and reconstituting marmoset germ cell development in vitro, thus providing a comparative tool and foundation for a preclinical modeling of human in vitro gametogenesis.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Animais , Camundongos , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Callithrix , Diferenciação Celular , Células-Tronco Pluripotentes/metabolismo , Células Germinativas/metabolismo
2.
Stem Cell Res ; 57: 102598, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34864219

RESUMO

Translation of stem cell therapies to the clinic will be most successful following optimization of efficacy and safety in appropriate preclinical model systems. Among available models, nonhuman primates (NHPs) provide the most accurate recapitulation of human anatomy, physiology, genetics and epigenetics. Here, we show that baboon pluripotent cells (PSCs) recapitulate key molecular features of human PSCs with greater accuracy than that found in PSCs from non-primate species such as mice. Specifically, baboon and human PSCs exhibit greater conservation of gene expression patterns, higher sequence and structural homology among pluripotency factors, more equivalent genome-wide patterns of histone and DNA methylation modifications, and similar maintenance of bivalent programming of developmental genes than that found between human and non-primate PSCs.

3.
PLoS One ; 13(3): e0193195, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29494646

RESUMO

Induced pluripotent stem cells (iPSCs) offer the possibility of cell replacement therapies using patient-matched cells to treat otherwise intractable diseases and debilitations. To successfully realize this potential, several factors must be optimized including i) selection of the appropriate cell type and numbers to transplant, ii) determination of the means of transplantation and the location into which the transplanted cells should be delivered, and iii) demonstration of the safety and efficacy of the cell replacement protocol to mitigate each targeted disease state. A majority of diseases or debilitations likely to be targeted by cell-based therapeutic approaches represent complex conditions or physiologies manifest predominantly in primates including humans. Nonhuman primates afford the most clinically relevant model system for biomedical studies and testing of cell-based therapies. Baboons have 92% genomic similarity with humans overall and especially significant similarities in their immunogenetic system, rendering this species a particularly valuable model for testing procedures involving cell transplants into living individuals. To maximize the utility of the baboon model, standardized protocols must be developed for the derivation of induced pluripotent stem cells from living adults and the long-term maintenance of these cells in culture. Here we tested four commercially available culture systems (ReproFF, mTeSR1, E8 and Pluristem) for competence to maintain baboon iPSCs in a pluripotent state over multiple passages, and to support the derivation of new lines of baboon iPSCs. Of these four media only Pluristem was able to maintain baboon pluripotency as assessed by morphological characteristics, immunocytochemistry and RT-qPCR. Pluristem also facilitated the derivation of new lines of iPSCs from adult baboon somatic cells, which had previously not been accomplished. We derived multiple iPS cell lines from adult baboon peripheral blood mononuclear cells cultured in Pluristem. These were validated by expression of the pluripotency markers OCT4, NANOG, SOX2, SSEA4 and TRA181, as well as the ability to differentiate into tissues from all three germ layers when injected into immunocompromised mice. These findings further advance the utility of the baboon as an ideal preclinical model system for optimizing iPS cell-based, patient-specific replacement therapies in humans.


Assuntos
Técnicas de Cultura de Células/métodos , Células-Tronco Pluripotentes Induzidas/citologia , Papio anubis , Animais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos NOD , Papio anubis/metabolismo
4.
Innate Immun ; 24(3): 152-162, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29482417

RESUMO

Macrophages are important innate immune cells that respond to microbial insults. In response to multi-bacterial infection, the macrophage activation state may change upon exposure to nascent mediators, which results in different bacterial killing mechanism(s). In this study, we utilized two respiratory bacterial pathogens, Mycobacterium bovis (Bacillus Calmette Guerin, BCG) and Francisella tularensis live vaccine strain (LVS) with different phagocyte evasion mechanisms, as model microbes to assess the influence of initial bacterial infection on the macrophage response to secondary infection. Non-activated (M0) macrophages or activated M2-polarized cells (J774 cells transfected with the mouse IL-4 gene) were first infected with BCG for 24-48 h, subsequently challenged with LVS, and the results of inhibition of LVS replication in the macrophages was assessed. BCG infection in M0 macrophages activated TLR2-MyD88 and Mincle-CARD9 signaling pathways, stimulating nitric oxide (NO) production and enhanced killing of LVS. BCG infection had little effect on LVS escape from phagosomes into the cytosol in M0 macrophages. In contrast, M2-polarized macrophages exhibited enhanced endosomal acidification, as well as inhibiting LVS replication. Pre-infection with BCG did not induce NO production and thus did not further reduce LVS replication. This study provides a model for studies of the complexity of macrophage activation in response to multi-bacterial infection.


Assuntos
Infecções Bacterianas/imunologia , Coinfecção/imunologia , Macrófagos/imunologia , Fagossomos/imunologia , Animais , Polaridade Celular , Endossomos/imunologia , Humanos , Evasão da Resposta Imune , Imunidade Inata/imunologia , Interleucina-4/biossíntese , Camundongos , Infecções por Mycobacterium/imunologia , Mycobacterium bovis/imunologia , Óxido Nítrico/biossíntese , Transdução de Sinais/imunologia , Transfecção , Tularemia/imunologia , Vacinas Vivas não Atenuadas
5.
Stem Cell Res ; 17(2): 352-366, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27622596

RESUMO

The derivation of dopaminergic neurons from induced pluripotent stem cells brings new hope for a patient-specific, stem cell-based replacement therapy to treat Parkinson's disease (PD) and related neurodegenerative diseases; and this novel cell-based approach has already proven effective in animal models. However, there are several aspects of this procedure that have yet to be optimized to the extent required for translation to an optimal cell-based transplantation protocol in humans. These challenges include pinpointing the optimal graft location, appropriately scaling up the graft volume, and minimizing the risk of chronic immune rejection, among others. To advance this procedure to the clinic, it is imperative that a model that accurately and fully recapitulates characteristics most pertinent to a cell-based transplantation to the human brain is used to optimize key technical aspects of the procedure. Nonhuman primates mimic humans in multiple ways including similarities in genomics, neuroanatomy, neurophysiology, immunogenetics, and age-related changes in immune function. These characteristics are critical to the establishment of a relevant model in which to conduct preclinical studies to optimize the efficacy and safety of cell-based therapeutic approaches to the treatment of PD. Here we review previous studies in rodent models, and emphasize additional advantages afforded by nonhuman primate models in general, and the baboon model in particular, for preclinical optimization of cell-based therapeutic approaches to the treatment of PD and other neurodegenerative diseases. We outline current unresolved challenges to the successful application of stem cell therapies in humans and propose that the baboon model in particular affords a number of traits that render it most useful for preclinical studies designed to overcome these challenges.


Assuntos
Doença de Parkinson/terapia , Transplante de Células-Tronco , Células-Tronco/citologia , Potenciais de Ação , Animais , Terapia Baseada em Transplante de Células e Tecidos , Dopamina/metabolismo , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/transplante , Modelos Animais
6.
Stem Cells Transl Med ; 5(9): 1133-44, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27343168

RESUMO

UNLABELLED: : The progressive death of dopamine producing neurons in the substantia nigra pars compacta is the principal cause of symptoms of Parkinson's disease (PD). Stem cells have potential therapeutic use in replacing these cells and restoring function. To facilitate development of this approach, we sought to establish a preclinical model based on a large nonhuman primate for testing the efficacy and safety of stem cell-based transplantation. To this end, we differentiated baboon fibroblast-derived induced pluripotent stem cells (biPSCs) into dopaminergic neurons with the application of specific morphogens and growth factors. We confirmed that biPSC-derived dopaminergic neurons resemble those found in the human midbrain based on cell type-specific expression of dopamine markers TH and GIRK2. Using the reverse transcriptase quantitative polymerase chain reaction, we also showed that biPSC-derived dopaminergic neurons express PAX6, FOXA2, LMX1A, NURR1, and TH genes characteristic of this cell type in vivo. We used perforated patch-clamp electrophysiology to demonstrate that biPSC-derived dopaminergic neurons fired spontaneous rhythmic action potentials and high-frequency action potentials with spike frequency adaption upon injection of depolarizing current. Finally, we showed that biPSC-derived neurons released catecholamines in response to electrical stimulation. These results demonstrate the utility of the baboon model for testing and optimizing the efficacy and safety of stem cell-based therapeutic approaches for the treatment of PD. SIGNIFICANCE: Functional dopamine neurons were produced from baboon induced pluripotent stem cells, and their properties were compared to baboon midbrain cells in vivo. The baboon has advantages as a clinically relevant model in which to optimize the efficacy and safety of stem cell-based therapies for neurodegenerative diseases, such as Parkinson's disease. Baboons possess crucial neuroanatomical and immunological similarities to humans, and baboon pluripotent stem cells can be differentiated into functional neurons that mimic those in the human brain, thus laying the foundation for the utility of the baboon model for evaluating stem cell therapies.


Assuntos
Neurônios Dopaminérgicos/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Neurais/citologia , Animais , Técnicas de Cultura de Células/métodos , Diferenciação Celular/fisiologia , Neurônios Dopaminérgicos/fisiologia , Imuno-Histoquímica , Células-Tronco Pluripotentes Induzidas/fisiologia , Modelos Animais , Células-Tronco Neurais/fisiologia , Papio , Técnicas de Patch-Clamp , Reação em Cadeia da Polimerase
7.
PLoS One ; 11(4): e0153402, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27100824

RESUMO

M-cells (microfold cells) are thought to be a primary conduit of intestinal antigen trafficking. Using an established neutralizing anti-RANKL (Receptor Activator of NF-κB Ligand) antibody treatment to transiently deplete M-cells in vivo, we sought to determine whether intestinal M-cells were required for the effective induction of protective immunity following oral vaccination with ΔiglB (a defined live attenuated Francisella novicida mutant). M-cell depleted, ΔiglB-vaccinated mice exhibited increased (but not significant) morbidity and mortality following a subsequent homotypic or heterotypic pulmonary F. tularensis challenge. No significant differences in splenic IFN-γ, IL-2, or IL-17 or serum antibody (IgG1, IgG2a, IgA) production were observed compared to non-depleted, ΔiglB-vaccinated animals suggesting complementary mechanisms for ΔiglB entry. Thus, we examined other possible routes of gastrointestinal antigen sampling following oral vaccination and found that ΔiglB co-localized to villus goblet cells and enterocytes. These results provide insight into the role of M-cells and complementary pathways in intestinal antigen trafficking that may be involved in the generation of optimal immunity following oral vaccination.


Assuntos
Vacinas Bacterianas/imunologia , Francisella tularensis/imunologia , Intestinos/citologia , Intestinos/imunologia , Tularemia/imunologia , Tularemia/prevenção & controle , Vacinas Atenuadas/imunologia , Animais , Feminino , Imunidade , Interferon gama/imunologia , Interleucina-17/imunologia , Interleucina-2/imunologia , Intestinos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Baço/imunologia , Baço/microbiologia
8.
Stem Cell Res ; 12(2): 539-49, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24487129

RESUMO

The BIRC5 gene encodes the oncofetal protein SURVIVIN, as well as four additional splice variants (ΔEx3, 2B, 3B and 2α). SURVIVIN, an inhibitor of apoptosis, is also a chromosomal passenger protein (CPP). Previous results have demonstrated that SURVIVIN is expressed at high levels in embryonic stem cells and inhibition of SURVIVIN function results in apoptosis, however these studies have not investigated the other four splice variants. In this study, we demonstrate that all variants are expressed at significantly higher levels in human embryonic stem (hES) cells than in differentiated cells. We examined the subcellular localization of the three most highly expressed variants. SURVIVIN displayed canonical CPP localization in mitotic cells and cytoplasmic localization in interphase cells. In contrast, SURVIVIN-ΔEx3 and SURVIVIN-2B did not localize as a CPP; SURVIVIN-ΔEx3 was found constitutively in the nucleus while SURVIVIN-2B was distributed along the chromosomes during mitosis and also to the mitotic spindle poles. We used inducible shRNA against SURVIVIN to inhibit expression in a titratable fashion. Using this system, we reduced the mRNA levels of these three variants to approx. 40%, resulting in a concomitant reduction of OCT4 and NANOG mRNA, suggesting a role for the SURVIVIN variants in pluripotency.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Proteínas Inibidoras de Apoptose/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Animais , Apoptose/fisiologia , Diferenciação Celular/fisiologia , Células Cultivadas , Expressão Gênica , Humanos , Proteínas Inibidoras de Apoptose/biossíntese , Proteínas Inibidoras de Apoptose/genética , Camundongos , Fator 3 de Transcrição de Octâmero/biossíntese , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Isoformas de Proteínas , RNA Mensageiro/antagonistas & inibidores , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/biossíntese , RNA Interferente Pequeno/genética , Survivina
9.
Cell Reprogram ; 15(6): 495-502, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24182315

RESUMO

Development of effective pluripotent stem cell-based therapies will require safety and efficacy testing in a clinically relevant preclinical model such as nonhuman primates (NHPs). Baboons and macaques are equally similar to humans genetically and both have been extensively used for biomedical research. Macaques are preferred for human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS) research whereas baboons are preferred for transplantation studies because of the greater similarity of their anatomy and immunogenetic system to those of humans. We generated four induced pluripotent stem cell (iPSC) lines from skin cells of the olive baboon (Papio anubis). Each line shows the distinct morphology of primate pluripotent stem cells, including flat colonies with well-defined borders and a high nuclear/cytoplasm ratio. Each is positive for the pluripotency markers OCT4, SOX2, NANOG, and SSEA4. Pluripotency was confirmed in two lines by teratoma formation with representative tissues from each germ layer, whereas a third produced cells from all three germ layers following embryoid body differentiation. Three lines have a normal male karyotype and the fourth is missing the short arm of one copy of chromosome 18. This may serve as an in vitro model for the human developmental disorder 18p-, which impacts 1 in 50,000 births/year. These iPSC lines represent the first step toward establishing the baboon as a NHP model for developing stem cell-based therapies.


Assuntos
Modelos Animais , Transplante de Células-Tronco , Animais , Sequência de Bases , Biomarcadores/metabolismo , Primers do DNA , Células-Tronco Pluripotentes Induzidas , Cariotipagem , Papio , Reação em Cadeia da Polimerase
10.
Tissue Eng Part A ; 19(3-4): 467-74, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23083071

RESUMO

The present study addressed adult human mesenchymal stem cell (MSC) differentiation toward the osteoblastic lineage in response to alternating electric current, a biophysical stimulus. For this purpose, MSCs (chosen because of their proven capability for osteodifferentiation in the presence of select bone morphogenetic proteins) were dispersed and cultured within electric-conducting type I collagen hydrogels, in the absence of supplemented exogenous dexamethasone and/or growth factors, and were exposed to either 10 or 40 µA alternating electric current for 6 h per day. Under these conditions, MSCs expressed both early- (such as Runx-2 and osterix) and late- (specifically, osteopontin and osteocalcin) osteogenic genes as a function of level, and duration of exposure to alternating electric current. Compared to results obtained after 7 days, gene expression of osteopontin and osteocalcin (late-osteogenic genes) increased at day 14. In contrast, expression of these osteogenic markers from MSCs cultured under similar conditions and time periods, but not exposed to alternating electric current, did not increase as a function of time. Most importantly, expression of genes pertinent to the either adipogenic (specifically, Fatty Acid Binding Protein-4) or chondrogenic (specifically, type II collagen) pathways was not detected when MSCs were exposed to the aforementioned alternating electric-current conditions tested in the present study. The present research study was the first to provide evidence that alternating electric current promoted the differentiation of adult human MSCs toward the osteogenic pathway. Such an approach has the yet untapped potential to provide critically needed differentiated cell supplies for cell-based assays and/or therapies for various biomedical applications.


Assuntos
Estimulação Elétrica/métodos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Osteoblastos/citologia , Osteoblastos/fisiologia , Osteogênese/fisiologia , Osteogênese/efeitos da radiação , Engenharia Tecidual/métodos , Diferenciação Celular/efeitos da radiação , Células Cultivadas , Campos Eletromagnéticos , Humanos , Células-Tronco Mesenquimais/efeitos da radiação , Osteoblastos/efeitos da radiação , Doses de Radiação
11.
J Immunol ; 188(11): 5604-11, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22529298

RESUMO

TLR signaling is critical for early host defense against pathogens, but the contributions of mast cell TLR-mediated mechanisms and subsequent effector functions during pulmonary infection are largely unknown. We have previously demonstrated that mast cells, through the production of IL-4, effectively control Francisella tularensis replication. In this study, the highly human virulent strain of F. tularensis SCHU S4 and the live vaccine strain were used to investigate the contribution of mast cell/TLR regulation of Francisella. Mast cells required TLR2 for effective bacterial killing, regulation of the hydrolytic enzyme cathepsin L, and for coordination and trafficking of MHC class II and lysosomal-associated membrane protein 2. Infected TLR2(-/-) mast cells, in contrast to wild-type and TLR4(-/-) cells, lacked detectable IL-4 and displayed increased cell death with a 2-3 log increase of F. tularensis replication, but could be rescued with rIL-4 treatment. Importantly, MHC class II and lysosomal-associated membrane protein 2 localization with labeled F. tularensis in the lungs was greater in wild-type than in TLR2(-/-) mice. These results provide evidence for the important effector contribution of mast cells and TLR2-mediated signaling on early innate processes in the lung following pulmonary F. tularensis infection and provide additional insight into possible mechanisms by which intracellular pathogens modulate respiratory immune defenses.


Assuntos
Francisella tularensis/crescimento & desenvolvimento , Francisella tularensis/imunologia , Mastócitos/imunologia , Mastócitos/metabolismo , Transdução de Sinais/imunologia , Receptor 2 Toll-Like/deficiência , Receptor 2 Toll-Like/fisiologia , Animais , Morte Celular/genética , Morte Celular/imunologia , Interleucina-4/deficiência , Mastócitos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transporte Proteico/genética , Transporte Proteico/imunologia , Transdução de Sinais/genética , Receptor 4 Toll-Like/fisiologia , Tularemia/imunologia , Tularemia/microbiologia , Tularemia/prevenção & controle
12.
Exp Cell Res ; 316(17): 2747-59, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20599958

RESUMO

Impaired DSB repair has been implicated as a molecular mechanism contributing to the accelerating aging phenotype in Hutchinson-Gilford progeria syndrome (HGPS), but neither the extent nor the cause of the repair deficiency has been fully elucidated. Here we perform a quantitative analysis of the steady-state number of DSBs and the repair kinetics of ionizing radiation (IR)-induced DSBs in HGPS cells. We report an elevated steady-state number of DSBs and impaired repair of IR-induced DSBs, both of which correlated strongly with abnormal nuclear morphology. We recreated the HGPS cellular phenotype in human coronary artery endothelial cells for the first time by lentiviral transduction of GFP-progerin, which also resulted in impaired repair of IR-induced DSBs, and which correlated with abnormal nuclear morphology. Farnesyl transferase inhibitor (FTI) treatment improved the repair of IR-induced DSBs, but only in HGPS cells whose nuclear morphology was also normalized. Interestingly, FTI treatment did not result in a statistically significant reduction in the higher steady-state number of DSBs. We also report a delay in localization of phospho-NBS1 and MRE11, MRN complex repair factors necessary for homologous recombination (HR) repair, to DSBs in HGPS cells. Our results demonstrate a correlation between nuclear structural abnormalities and the DSB repair defect, suggesting a mechanistic link that may involve delayed repair factor localization to DNA damage. Further, our results show that similar to other HGPS phenotypes, FTI treatment has a beneficial effect on DSB repair.


Assuntos
Núcleo Celular/patologia , Quebras de DNA de Cadeia Dupla , Reparo do DNA/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Farnesiltranstransferase/antagonistas & inibidores , Fibroblastos/patologia , Progéria/patologia , Estudos de Casos e Controles , Células Cultivadas , Inibidores Enzimáticos/uso terapêutico , Fibroblastos/efeitos dos fármacos , Humanos , Progéria/tratamento farmacológico , Síndrome
13.
Stem Cell Res ; 4(1): 25-37, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19854689

RESUMO

While human embryonic stem cells (hESCs) are predisposed toward chromosomal aneploidities on 12, 17, 20, and X, rendering them susceptible to transformation, the specific genes expressed are not yet known. Here, by identifying the genes overexpressed in pluripotent rhesus ESCs (nhpESCs) and comparing them both to their genetically identical differentiated progeny (teratoma fibroblasts) and to genetically related differentiated parental cells (parental skin fibroblasts from whom gametes were used for ESC derivation), we find that some of those overexpressed genes in nhpESCs cluster preferentially on rhesus chromosomes 16, 19, 20, and X, homologues of human chromosomes 17, 19, 16, and X, respectively. Differentiated parental skin fibroblasts display gene expression profiles closer to nhpESC profiles than to teratoma cells, which are genetically identical to the pluripotent nhpESCs. Twenty over- and underexpressed pluripotency modulators, some implicated in neurogenesis, have been identified. The overexpression of some of these genes discovered using pedigreed nhpESCs derived from prime embryos generated by fertile primates, which is impossible to perform with the anonymously donated clinically discarded embryos from which hESCs are derived, independently confirms the importance of chromosome 17 and X regions in pluripotency and suggests specific candidates for targeting differentiation and transformation decisions.


Assuntos
Cromossomos Humanos , Células-Tronco Embrionárias/metabolismo , Expressão Gênica , Macaca mulatta/genética , Células-Tronco Pluripotentes/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , Cromossomos Humanos Par 16 , Cromossomos Humanos Par 17 , Cromossomos Humanos Par 19 , Cromossomos Humanos X , Células-Tronco Embrionárias/citologia , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Masculino , Células-Tronco Pluripotentes/citologia , Teratoma/genética , Teratoma/patologia
14.
Cloning Stem Cells ; 11(2): 245-57, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19508115

RESUMO

Stable and full differentiation of pluripotent stem cells into functional beta-cells offers the potential to treat type I diabetes with a theoretically inexhaustible source of replacement cells. In addition to the difficulties in directed differentiation, progress toward an optimized and reliable protocol has been hampered by the complication that cultured cells will concentrate insulin from the media, thus making it difficult to tell which, if any, cells are producing insulin. To address this, we utilized a novel murine embryonic stem cell (mESC) research model, in which the green fluorescent protein (GFP) has been inserted within the C-peptide of the mouse insulinII gene (InsulinII-GFP). Using this method, cells producing insulin are easily identified. We then compared four published protocols for differentiating mESCs into beta-cells to evaluate their relative efficiency by assaying intrinsic insulin production. Cells differentiated using each protocol were easily distinguished based on culture conditions and morphology. This comparison is strengthened because all testing is performed within the same laboratory by the same researchers, thereby removing interlaboratory variability in culture, cells, or analysis. Differentiated cells were analyzed and sorted based on GFP fluorescence as compared to wild type cells. Each differentiation protocol increased GFP fluorescence but only modestly. None of these protocols yielded more than 3% of cells capable of insulin biosynthesis indicating the relative inefficiency of all analyzed protocols. Therefore, improved beta-cells differentiation protocols are needed, and these insulin II GFP cells may prove to be an important tool to accelerate this process.


Assuntos
Técnicas de Cultura de Células , Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/fisiologia , Proteínas de Fluorescência Verde/metabolismo , Células Secretoras de Insulina/fisiologia , Insulina/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Animais , Linhagem Celular , Células-Tronco Embrionárias/citologia , Genes Reporter , Proteínas de Fluorescência Verde/genética , Insulina/genética , Células Secretoras de Insulina/citologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas Recombinantes de Fusão/genética , Distribuição Tecidual
15.
Stem Cell Res ; 2(3): 178-87, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19393591

RESUMO

Here we have developed protocols using the baboon as a complementary alternative Old World Primate to rhesus and other macaques which have severe limitations in their availability. Baboons are not limited as research resources, they are evolutionarily closer to humans, and the multiple generations of pedigreed colonies which display complex human disease phenotypes all support their further optimization as an invaluable primate model. Since neither baboon-assisted reproductive technologies nor baboon embryonic stem cells (ESCs) have been reported, here we describe the first derivations and characterization of baboon ESC lines from IVF-generated blastocysts. Two ESCs lines (BabESC-4 and BabESC-15) display ESC morphology, express pluripotency markers (Oct-4, hTert, Nanog, Sox-2, Rex-1, TRA1-60, TRA1-81), and maintain stable euploid female karyotypes with parentage confirmed independently. They have been grown continuously for >430 and 290 days, respectively. Teratomas from both lines have all three germ layers. Availabilities of these BabESCs represent another important resource for stem cell biologists.


Assuntos
Linhagem Celular , Células-Tronco Embrionárias/citologia , Modelos Biológicos , Animais , Biomarcadores/metabolismo , Blastômeros/citologia , Diferenciação Celular , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/transplante , Feminino , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Imuno-Histoquímica , Cariotipagem , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Papio , Primatas , Medicina Regenerativa , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Telomerase/genética , Telomerase/metabolismo
16.
Stem Cells ; 25(11): 2695-2704, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17641389

RESUMO

Human embryonic stem cells (hESCs) hold great biomedical promise, but experiments comparing them produce heterogeneous results, raising concerns regarding their reliability and utility, although these variations may result from their disparate and anonymous origins. To determine whether primate ESCs have intrinsic biological limitations compared with mouse ESCs, we examined expression profiles and pluripotency of newly established nonhuman primate ESC (nhpESCs). Ten pedigreed nhpESC lines, seven full siblings (fraternal quadruplets and fraternal triplets), and nine half siblings were derived from 41 rhesus embryos; derivation success correlated with embryo quality. Each line has been growing continuously for approximately 1 year with stable diploid karyotype (except for one stable trisomy) and expresses in vitro pluripotency markers, and eight have already formed teratomas. Unlike the heterogeneous gene expression profiles found among hESCs, these nhpESCs display remarkably homogeneous profiles (>97%), with full-sibling lines nearly identical (>98.2%). Female nhpESCs express genes distinct from their brother lines; these sensitive analyses are enabled because of the very low background differences. Experimental comparisons among these primate ESCs may prove more reliable than currently available hESCs, since they are akin to inbred mouse strains in which genetic variables are also nearly eliminated. Finally, contrasting the biological similarities among these lines with the heterogeneous hESCs might suggest that additional, more uniform hESC lines are justified. Taken together, pedigreed primate ESCs display homogeneous and reliable expression profiles. These similarities to mouse ESCs suggest that heterogeneities found among hESCs likely result from their disparate origins rather than intrinsic biological limitations with primate embryonic stem cells.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/fisiologia , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Linhagem , Animais , Células Cultivadas , Células-Tronco Embrionárias/metabolismo , Feminino , Macaca mulatta , Masculino
17.
Curr Protoc Stem Cell Biol ; Chapter 1: Unit 1A.1, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18785157

RESUMO

Embryonic stem (ES) cells are a powerful research tool enabling the generation of mice with custom genetics, the study of the earliest stages of mammalian differentiation in vitro and, with the isolation of human ES cells, the potential of cell-based therapies for a number of diseases including Parkinson's and Type 1 diabetes. ES cells isolated from nonhuman primates (nhpES cells) offer the opportunity to ethically test the developmental potential of primate ES cells in chimeric offspring. If these cells have similar potency to mouse ES cells, this may open a new era of primate models of human disease. Nonhuman primates are the perfect model system for the preclinical testing of ES cell-derived therapies. In this unit, we describe methods for the derivation and characterization of nonhuman primate ES cells. With these protocols, the investigator will be able to isolate nhpES cells and perform the necessary tests to confirm the pluripotent phenotype.


Assuntos
Células-Tronco Embrionárias/citologia , Primatas/embriologia , Animais , Sequência de Bases , Técnicas de Cultura de Células , Separação Celular , Primers do DNA/genética , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/transplante , Expressão Gênica , Imuno-Histoquímica , Cariotipagem , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Fenótipo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/transplante , Primatas/genética , Primatas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Teratoma/etiologia , Transplante Heterólogo
18.
Methods Mol Biol ; 331: 347-74, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16881526

RESUMO

As human embryonic stem cells (hESCs) undergo differentiation, they express genes characteristic of the lineage for which they are destined. However, fully differentiated individual cell types can be characterized by the number of mitochondria they possess and the copies of the mitochondrial genome per mitochondrion. These characteristics are indicative of a specific cell's requirement for adenosine triphosphate (ATP) and therefore cellular viability and function. Consequently, failure for an ESC to possess the full complement of mitochondria and mitochondrial DNA (mtDNA) could limit its final commitment to a particular fate. We describe a series of protocols that analyze the process of cellular mitochondrial and mtDNA differentiation during hESC differentiation. In addition, mtDNA transcription and replication are key events in cellular differentiation that require interaction between the nucleus and the mitochondrion. To this extent, we describe a series of protocols that analyze the initiation of these key events as hESCs progress from their undifferentiated state to the fully committed cell. Last, we describe real-time polymerase chain reaction protocols that allow both the identification of mtDNA copy number and determine whether mtDNA copy is uniform (homoplasmy) in its transmission or heterogeneous (heteroplasmy).


Assuntos
DNA Mitocondrial/genética , Mitocôndrias/genética , Miócitos Cardíacos/citologia , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/fisiologia , Benzimidazóis , Carbocianinas , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Divisão Celular , DNA Mitocondrial/isolamento & purificação , Corantes Fluorescentes , Dosagem de Genes , Genoma Humano , Humanos , Imuno-Histoquímica , Potenciais da Membrana , Microscopia de Fluorescência , Miócitos Cardíacos/fisiologia , RNA/genética , RNA/isolamento & purificação , RNA Mitocondrial , RNA Interferente Pequeno , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Análise de Sequência de DNA/métodos , Transcrição Gênica , Transfecção/métodos
19.
Cloning Stem Cells ; 7(3): 141-53, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16176124

RESUMO

Mitochondrial biogenesis and activation of both oxidative phosphorylation, as well as transcription and replication of the mitochondrial genome, are key regulatory events in cell differentiation. Mitochondrial DNA transcription and replication are highly dependent on the interaction with nuclear-encoded transcription factors translocated from the nucleus. Using a human embryonic stem cell line, HSF 6, we analyzed the proliferation of mitochondria and the expression of mtDNA-specific transcription factors in undifferentiated, migratory embryonic stem cells and spontaneously derived cardiomyocytes. Mitochondrial proliferation and mtDNA transcription are initiated in human embryonic stem cells as they undergo spontaneous differentiation in culture into beating cardiomyocytes. Undifferentiated, pluripotent human embryonic stem cells have few mitochondria, and, as they differentiate, they polarize to one extremity of the cell and then bipolarize the differentiating cell. The differentiated cell then adopts the cytoplasmic configuration of a somatic cell as evidenced in differentiating cardiomyocytes. Transcription and replication of the extranuclear mitochondrial genome is dependent on nuclear encoded factors exported to the mitochondrion. However, the differentiating cardiomyocytes have reduced or absent levels of these transcription and replication factors, namely mitochondrial transcription factors A, B1, B2, and nuclear respiratory factor 1 and polymerase gamma. Therefore, final embryonic stem cell commitment may be influenced by mitochondrial proliferation and mtDNA transcription. However, it is likely that differentiating cardiomyocytes are in mitochondrial arrest, awaiting commitment to a final cell fate.


Assuntos
Diferenciação Celular/fisiologia , Embrião de Mamíferos/fisiologia , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/fisiologia , Células-Tronco/fisiologia , Fatores de Transcrição/biossíntese , Linhagem Celular , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Embrião de Mamíferos/ultraestrutura , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Humanos , Mitocôndrias Cardíacas/genética , Miócitos Cardíacos/ultraestrutura , Células-Tronco/ultraestrutura , Fatores de Transcrição/genética , Transcrição Gênica/fisiologia
20.
Curr Pharm Des ; 10(15): 1739-44, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15180536

RESUMO

The spleen tyrosine kinase Syk is an enigmatic protein tyrosine kinase functional in a number of diverse cellular processes. It is best known as a non receptor protein tyrosine kinase involved in signal transduction in cells of hematopoietic origin and plays a crucial role in signaling in most of these cells. It is involved in B and T-cell function, platelet aggregation, mast cell signaling, neutrophils and macrophages. Recently it has been found in tissues outside of the hematopoietic lineage. Perhaps the most interesting non-traditional role of Syk is that of a potential tumor suppressor in breast cancer. Absence of Syk protein in primary breast tumors is correlated with poor outcomes. Syk deficient cells have increased motility which is restored to normalcy by replacement with wild-type Syk. Syk also associates with the actin and tubulin cytoskeleton and is an alpha-tubulin kinase. The central role that Syk has in a number of cellular processes makes it an ideal starting point for broad therapeutic targeting.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/uso terapêutico , Precursores Enzimáticos/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/enzimologia , Inibidores Enzimáticos/farmacologia , Precursores Enzimáticos/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Tirosina Quinases/metabolismo , Quinase Syk
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...